Поняття похідної
![]() |
В кожній точці, похідна функції f(x) = 1 + x∙sinx2 дорівнює нахилу лінії, яка дотична до кривої. Коли похідна додатня — дотична зелена, коли від'ємна — дотична червона, а коли дорівнює нулю — чорна. |
1. Означення
Нехай в деякому околі точки x0 визначена функція f. Якщо ми візьмемо довільне число x в цьому околі, то приріст аргументу (Δx) в цьому випадку визначається, як x−x0, а приріст функції (Δy) — як f(x)−f(x0). Тоді, якщо існує границя
то вона називається похідною функції f в точці x0.
Або:
похідна визначається як границя відношення приросту функції до приросту її аргументу коли приріст аргументу прямує до нуля (якщо така границя існує).
Процес
знаходження похідної функції називається диференціюва́нням.
Зворотним до
диференціювання є інтегрування — процес знаходження первісної.
2. Геометричний зміст похідної
Геометричний зміст похідної: значення похідної функції y = f(x) у точці x0 дорівнює кутовому коефіцієнту дотичної до графіка функції в точці з абсцисою x0:
y' = f'(x0) = k = tgα.